FHNW Fachhochschule Nordwestschweiz
  • Startseite
  • Publikationen
  • Projekte
  • Studentische Arbeiten
  • de
  •  Login
Eintraganzeige 
  •   IRF Home
  • Hochschule für Life Sciences
  • Institut für Pharma Technology
  • Eintraganzeige
  • Hochschule für Life Sciences
  • Institut für Pharma Technology
  • Eintraganzeige
JavaScript is disabled for your browser. Some features of this site may not work without it.

New prediction methods for solubility parameters based on molecular sigma profiles using pharmaceutical materials

Datum
07.2018
Autorin/Autor
Niederquell, Andreas
Wyttenbach, Nicole
Kuentz, Martin
Metadata
Zur Langanzeige
Type
01 - Zeitschriftenartikel, Journalartikel oder Magazin
Primary target group
Science
Created while belonging to FHNW?
Yes
Zusammenfassung
Solubility parameters have been applied extensively in the chemical and pharmaceutical sciences. Particularly attractive is calculation of solubility parameters based on chemical structure and recently, new in silico methods have been proposed. Thus, screening charge densities of molecular surfaces (i.e. so-called σ-profiles) are used by the conductor-like screening model for real solvents (COSMO-RS) and can be employed in a quantitative structure property relationship (QSPR) to predict solubility parameters. In the current study, it was aimed to compare both in silico methods with an experimental dataset of pharmaceutical compounds, which was complemented with own measurements by inverse gas chromatography. An initial evaluation of the total solubility parameters of reference solvents resulted in excellent predictions (observed versus predicted values) with R2 of 0.855 (COSMO-RS) and 0.945 (QSPR). The subsequent main study of pharmaceutical compounds exhibited R2 values of 0.701 (COSMO-RS) and 0.717 (QSPR). The comparatively lower prediction was to some extent due to the solid state of pharmaceuticals with known conceptual limitations of the solubility parameter and possible experimental bias. Total solubility parameters were also estimated by classical group contribution methods, which had comparatively lower prediction power. Therefore, the new in silico methods are highly promising for pharmaceutical applications.
URI
http://hdl.handle.net/11654/26966

Stöbern

Gesamter BestandBereiche & SammlungenErscheinungsdatumAutoren/AutorinnenTitelThemenDiese SammlungErscheinungsdatumAutoren/AutorinnenTitelThemen

Mein Benutzerkonto

EinloggenRegistrieren

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Kontakt

Fachhochschule Nordwestschweiz FHNW
Vizepräsidium Hochschulentwicklung
Bahnhofstrasse 6
5210 Windisch

E-Mail: irf@fhnw.ch

Über das IRF

Das IRF ist das digitale Repositorium der Fachhochschule Nordwestschweiz FHNW. Es enthält Publikationen, studentische Arbeiten und Projekte.

Links

Liste der IRF Power User
Feedbackformular

www.fhnw.ch | Impressum | Datenschutz | Urheberrecht