Zur Kurzanzeige

dc.contributor.authorRüegg, J.
dc.contributor.authorSchumacher, R.
dc.contributor.authorWeber, Franz E.
dc.contributor.authorde Wild, Michael
dc.date.accessioned2018-01-10T09:19:52Z
dc.date.available2018-01-10T09:19:52Z
dc.date.issued2017
dc.identifier.doihttps://doi.org/10.1515/cdbme-2017-0127
dc.identifier.urihttp://hdl.handle.net/11654/25791
dc.description.abstractThe clinical performance of an implant, e.g. for the treatment of large bone defects, depends on the implant material, anchorage, surface topography and chemistry, but also on the mechanical properties, like the stiffness. The latter can be adapted by the porosity. Whereas foams show isotropic mechanical properties, digitally modelled scaffolds can be designed with anisotropic behaviour. In this study, we designed and produced 3D scaffolds based on an orthogonal architecture and studied its angle-dependent stiffness. The aim was to produce scaffolds with different orientations of the microarchitecture by selective laser melting and compare the angle-specific mechanical behaviour with an in-silico simulation. The anisotropic characteristics of open-porous implants and technical limitations of the production process were studied.
dc.language.isoen_US
dc.relation.ispartofCurrent Directions in Biomedical Engineering
dc.accessRightsAnonymous
dc.subjectPorous metallic scaffold
dc.subjectanisotropy
dc.subjectstructure
dc.subjectbiomechanical testing
dc.titleMechanical anisotropy of titanium scaffolds
dc.type01 - Zeitschriftenartikel, Journalartikel oder Magazin
dc.volume3
dc.issue2
dc.audienceScience
fhnw.publicationStatePublished
fhnw.ReviewTypeNo peer review
fhnw.InventedHereYes
fhnw.PublishedSwitzerlandYes
fhnw.pagination607–611
fhnw.IsStudentsWorkno
fhnw.publicationOnlineJa


Dateien zu dieser Ressource

DateienGrösseFormatAnzeige

Zu diesem Eintrag gibt es keine Dateien.

Der Eintrag erscheint in:

Zur Kurzanzeige