Energy saving in smart homes based on consumer behaviour data
Type
11 - Studentische Arbeit
Primary target group
Science
Created while belonging to FHNW?
Yes
Zusammenfassung
This paper discusses how energy can be saved in smart homes without lowering the comfort of the
inhabitants, based on consumer behaviour data only. A recommender system was designed, that suggests
actions for inhabitants without the necessity for installing additional devices, executing manual
configuration or having any other interaction with the system.
As a consequence of the devastating earthquake and the resulting nuclear disaster that struck Fukushima
in March 2011, concerned members of the public and the government agreed on a major reconsideration
of the energy policy. However, such a radical rethinking can only be achieved if private households
increase their efforts to save energy. Nevertheless, most research approaches conducted in smart homes
in the past years, dealt with convenience rather than with sustainability. The aim of this master thesis is
to find a way to save energy without causing significant inconveniences for the consumer. Therefore,
the following hypothesis was formulated: “It is possible to design a recommender system that can
suggest actions in smart homes based on consumer behaviour, which will lower energy usage but not
decrease comfort levels”.
The approach followed in this paper, is to mine frequent (and/or periodic) patterns in the event data of
the inhabitants electricity usages, recorded by a smart home automation system. These patterns are
converted into association rules, prioritized and compared with the current behaviour of the inhabitants.
If the system detects opportunities to save energy without decreasing the comfort level, it will send a
recommendation to the residents.
Because the most appropriate research design to prove this hypothesis is design science research, the
project follows the methodology to design and implement a functional prototype of a recommender
system. At the end of the project, the prototype is evaluated in smart homes under real conditions.
The main findings of the project and the concluding field-test of the prototype were:
The project succeeded in identifying possible actions, which can be recommended in smart
homes to lower energy usage in smart homes.
Investigations showed how patterns in the behaviour data of the inhabitants can be used to
trigger these actions at the right moment, to not lower comfort levels for the inhabitants.
A design has evolved for a recommender system that uses association rules and deterministic
finite state machines.
It was identified, that the confidence and the length of a pattern are significant measures to
predict if a suggestion does lower comfort or not.
Overall, it can be said that this master thesis could verify part of its statement: The prototype
demonstrated that it is possible to suggest actions that lower energy usage, but do not decrease comfort
levels, while using consumer behaviour data as single source. However, besides the useful
recommendations, the system did still recommend actions that did not just lower energy usage, but also
the comfort level of the inhabitants. The ratio of useful recommendations, which reached little over 11%
during the final test of the prototype, must be increased before broader adaption of the system is possible.
Nevertheless, the proof of concept provided by the prototype is the first important step for further
research in this field.